• 回到顶部
  • 4009-670570
  • 微信公众号

AlphaFold攻破生物学50年难题碳基创新加速度

来源:lovebet手机版 作者:lovebet体育

  7月22日,Deepmind在《自然》杂志发表文章称,AlphaFold已经预测出了35万种蛋白质结构,涵盖了98.5%的人类蛋白质组以及20种生物的蛋白质,并开源了它的数据库。

  前基因泰克CEO Arthur D. Levinson称这一成就为“划时代的进步”。西湖大学校长施一公评论称,这是人工智能对科学领域最大的一次贡献。

  蛋白质由20种氨基酸形成的序列组成,而氨基酸序列的折叠方式决定了蛋白质的作用,这也意味着,预测蛋白质结构对生物研究而言至关重要。但蛋白质可以折叠形成无数形态,以人类目前的计算资源几乎不可能完成结构序列计算。生物学家们会采用冷冻电镜等高精度仪器确定结构,但高级仪器和重复人工实验耗费的成本和时间精力都极大。

  1972年,生物化学家克里斯蒂安·安芬森在发表诺贝尔获奖感言时,提出一个著名的假设:理论上,蛋白质的氨基酸序列应该完全决定其三维结构。科学界为了验证这一理论做出了各种探索,CASP蛋白质结构预测比赛即为了检验预测蛋白质结构的技术水平而设立。AlphaFold在2018年的CASP横空出世,但在当时的预测准确性也不到60分,去年11月份则突破性地提高到92.4分。

  作为人工智能深入到生物领域的一大突破,AlphaFold很大程度上提高了科研人员的工作效率,加速生物领域创新成果的进展。斯坦福大学生物学博士后史寒朵就提到,如果AlphaFold早两三年出来,她的研究可以加快一年的时间。

  AlphaFold未来还需要解决的是未能预测的蛋白质,以及更复杂的小分子对蛋白质结构的影响等问题,这对于药物研究和人类疾病治疗都将起到重要作用。史寒朵猜测,AlphaFold的第二步可能会解决小分子如何改变蛋白质结构,从而影响它的功能,这将会离应用更近一步。

  播客《硅谷101》邀请到斯坦福大学生物学博士后史寒朵来全面解析AlphaFold的真实价值在哪里?AlphaFold如果要用于疾病治疗与制药,还需要哪些进展?我们将尽可能通俗地解读AlphaFold的线如果AlphaFold提前出来,研究项目可以早一年做完

  《硅谷101》:近几年生物学界出现了很多如基因编辑技术这类令人振奋的进展,我们这期要谈论的是AlphaFold,属于生物和计算机的交叉领域。AlphaFold预测出35万种蛋白质结构,并且开源了深度学习神经网络的AlphaFold2的信息出来后,很多评论者说“这是人工智能对科学领域最大的一次贡献”,是“一个划时代的进步”。对你来说,AlphaFold的预测和数据库开源对你研究的影响是什么?

  史寒朵:我是生物和物理的交叉背景,现在的研究方向主要是用物理知识、用定量的方式研究生物学。我现在选择的研究体系是细菌菌群,简单来说,在较复杂的环境里,细菌群体由很多种不同个体组成,可以联想生态学中,有羊和狼,也有其他物种组成的比较复杂的生态链。我现在主要是研究在由细菌组成的生态系统中,不同细菌之间如何互相影响,最终达到平衡的状态。

  AlphaFold能预测结果,这很大程度上提供了高置信度的猜测,告诉我们蛋白质大概长什么样,就可以把预测的结构和已知的其他蛋白质结构进行比较,以猜测它的功能。之后顺着猜测的方向设计实验和验证,这对我们的研究很有帮助,可以省很多时间和精力。

  两年前我们和普林斯顿的一个教授合作研究一个膜蛋白功能,由于当时不知道膜蛋白的结构,也没有任何信息,所以大概有一年的时间是在猜测这个蛋白质的功能。对它在细菌里起到的作用,设计不同的假设和实验,发现猜想不对就需要回到第一步,这是不断迭代和思考的过程。最后很幸运的是,经过一些反复的过程,最终猜对了蛋白质的功能,和实验结果也是相符的,文章在去年已经发表。

  目前预测的结果是98.5%,也就是还有1.5%的蛋白质现在还没有办法很好预测,从技术上讲,是因为其中很大一部分有很多无序结构。

  拿车来比喻,车门可以开关,但你还是能看到它是辆车,但是有一些所谓的无序蛋白就像橡皮泥,是可以很随意捏成想要的形状,它在不同环境中有不同形状,它的结构很不确定,AlphaFold目前的算法对解这类蛋白质比较有困难。

  史寒朵:蛋白质是一个由20 种氨基酸组成的分子,蛋白质最初被合成出来时实际上是根二维链条。我们可以想象成一根项链上面有 20 种不同的串珠, 即20 种不同氨基酸,不同氨基酸之间会有不同的相互作用,有些相互作用强,有些则弱,甚至有些会排斥。根据这些很神奇的基本物理作用力,最终这根项链会折叠成特定的形状。

  史寒朵:对,Baker Lab的Rose TTA,他们和AlphaFold基本上是同一时间,就是过去这两三周,他们在 《Science》上发表了一篇关于RoseTTA的一个改进算法的文章,这个算法做得也很不错,但只能说AlphaFold的数据库太大,然后精度又略微高一点,所以吸引了更多眼球。

  《硅谷101》:我记得AlphaFold第一年参加预测蛋白质结构的比赛CASP的得分就只有六十多分,但第二次很快就拿到92.4的高分,是在去年的十一月份底,到现在仅仅过去半年突然有了这么大的数据库,并且准确率达到了98.5%,为什么可以提高这么快呢?

  史寒朵:从18年到去年,他们在算法上应该做了很多有意义的调整改进,从百分之六十几提高到百分之九十几。这个数据的变化应该是算法改进和技术上的加成比较多,可能也有计算机资源,就是摩尔定律的加持,毕竟两年多时间里,计算资源本身也提高很快。

  我很希望看到的第二步是,把这个过程再做得更复杂一些,能够包括很多小分子,有一些蛋白质对人类的疾病有影响,那我们就想研究什么样的小分子能改变这些蛋白质结构,从而影响它的功能。

  现在比较多的还是像GeneTech 这种制药大厂,有很大的小分子库,他们有财力合成很多小分子,一种种在实验室里试。想象一下,如果能用类似AlphaFold的方式让计算机来解决,那么效率肯定比一个个在实验中做要快很多。

  AlphaFold和华盛顿那一家比起来,很明显的区别是AlphaFold需要的资源要大很多,有明显更大的内存,预测一个蛋白在GPU上所需要的时间也更长。当算力只能支持计算一定的内容时,就不得不做出一些妥协,我估计这也是导致最后性能的差异。

  史寒朵:到一定程度时,AI算法和底层设备也是分不开的,有更强的硬件可以算得更快,在算法上就可以做更多调整,让它跑更多次迭代,这个过程中往往能更好提高它的算法表现力。

  我也认识几个结构生物学家,他们的日常工作就是解蛋白质结构。很好玩的是,很多人都说,它偏偏就是没有解出我研究的那个蛋白。

  目前AlphaFold其实没有这部分信息,但在冷冻电镜上,蛋白质本身的结构和它加一个小分子的结构,做的难度差不多,所以完全有能力做更精细的结构区分。

  《硅谷101》:我知道寒朵你是高中时就拿了国际物理竞赛的第一名面试,那一年其实你也是创下了国际物理竞赛的三个历史,总分第一、实验分第一,也是历史上唯一一个同时获得三个单项第一名的女生。你的很多同学也提到你在北大物理系是大神级的人物,为什么会从物理来转向研究生物?

  史寒朵:首先是我个人比较喜欢实验和理论相结合的研究方式。目前物理发展的时间比较长,整个领域有比较明确的区分,我们有实验学家专门做实验,理论学家大部分时间就是在搞理论,这个模式很好,但我个人更喜欢自己能同时做实验和理论。

  物理学可以说是反向的过程,先提出一些理论或者简化的数学模型,然后在实验体系中验证,最后总结规律,这个过程中更多是抽象的建模。使用定量分析这些手段其实是物理学最初发展起来,然后逐步渗透到生物学中。所以大家也习惯上把用比较偏物理的手段来解决生物问题的方式,命名为生物物理学。现在的趋势就是,大家都想做所谓的跨学科科研。

  想我和我周围的同事也都会写一点代码,事实上我科研中可能有1/3到1/2时间是在电脑面前写代码、算东西,处理数据。我自己实验和在电脑前的工作的时间差不多是一半一半的。

  这样也挺好,但是如果有计算机方面的专业人士比我更懂计算机,能更高效地写代码,把代码的复用性做得更好的话,对科研本身会很有好处。

  很多人会在合作中比较沮丧,合作者会说,我的算法对这个数据的精度要求很高,有没有办法拿到更高精度或更多的数据,比如只有3只小鼠的数据,但如果要算法有比较好的表现需要100只小鼠的数据,可100只小鼠的数据可能是大家3年的工作量。有时领域之间的互不了解会导致对话无法进行下去,这样的交流成本太高,还不如自己做省时间。但如果有很多懂生物的计算机学家,可能这个问题会好很多。

  《硅谷101》:最近生物学上的重大进展有一个是基因编辑技术,然后还有一个是mRNA疫苗技术。基因编辑从出现到拿诺贝尔奖也没多久,为什么短短几年内会出现这么多生物领域的突破和创新呢?有没有一些基础科学的研究突破?

  基因编辑技术,CRISPR不是第一个,很可能也不是最后一个,但CRISPR的出现把技术门槛降到了一个程度,基本上所有实验室都能做,在所有的生物里都可以做。之前的一些基因编辑技术,相对来说更复杂,做起来对实验室、在哪些动植物里面实现,限制也相对比较多,就很限制他们的发展。技术简化之后,门槛低了,有更多人能做了。

  这两年南湾已经有上百家生物技术的创业公司,以前也有一些大的生物技术公司,比如GeneTech就在那边。

  谷歌之前收购的Verily(谷歌致力于生命科学的研究部门),也在那一片,都是相对来说比较成规模的公司。现在又多了很多小型初创公司,一方面是形成了集群效应,听说大家的器械和各种资源也可以共享。

  斯坦福有很多教授在给生物技术公司做咨询,也有一部分在斯坦福做教授的同时,自己也开公司。他们经常是把科研成果直接转化到一些新兴的技术过程中,随着大家创业门槛降低之后,这类事情应该会越来越常见。

  史寒朵:我也希望这样,但现在好像没有很强的动力尝试。因为目前我们对肠道菌群的了解还比较有限,如果只是为了减肥,那么风险就有点大,因为你不知道吃了别人的屎之后会有什么副作用。但这个过程,科学上来讲叫粪菌移植,就是把一个人的肠道菌群移植到另一个人体内,这个手段在治疗特定疾病,比如溃疡性结肠炎之类,确实已经是非常成熟的手段。

2022-01-25 09:51:08
浏览量: 40

三维高速振动伴随研磨珠敲打
研磨、均质、裂解、破碎
动植物组织、细菌、真菌

匹配近10种规格样品管
一次处理多达96个样品
随时暂停和继续

彩色触屏控制
选配液氮冷却

生物样品均质器

Bead Ruptor 24 Elite

We've been using Qsonica Q800R in our NGS library preparation pipeline for more than two years. Over that time, we processed hundreds of sample and Q800R has proven to be an exceptionally reliable machine producing consistent results with little variability from run to run."

- Dr. Igor Antoshechkin, Caltech

DNA剪切
超声波破碎仪

Q800R3

DNA剪切
RNA剪切
染色质剪切
二代测序

ChIP

ChIP-sequence
DNA-蛋白质相互作用

RNA-蛋白质相互作用

Made In USA

BIOPTICON

Tumor Management System

利用结构化激光扫描技术,对活体小鼠皮下肿瘤照射扫描,生成3D图像和数据,并进行综合数据分析、统计并生成报告

小鼠肿瘤测量管理系统

按钮

液氮样品保存罐

◆ 3年整罐质保,5年真空度保证

◆ 更大样品容量,更长保存时间

◆ 配置更丰富,使用更方便

Cryomizer Class

Cryopreservation Devices

CRYOSAFE

Legato

注射泵

Legato Syringe Pumps
● Stall detection 
● High resolution color
● touch screen
● Full metal chassis 
● Built in syringe table 
● Higher linear force 

★ 高分辨率彩色触屏控制,操作方便

★ 密码设定可有效保护使用权

★ 预留USB接口和RS485接口与电脑数据通讯

★ 单通道和多通道,注射和抽吸

★ 准确性低至±0.35%,重复性±0.05%

KD Scientific

◎ 陶瓷或铝质面板

◎ 单加热或加热搅拌

◎ 温度范围75℃-450℃

◎ 模拟,数字,程控

◎ 单位点,多位点

EchoTherm系列加热板

TorreyPines Scientific

Scientific Industries

Vortex Genie 2

☆ 享誉世界60多年,遍布世界各个实验室
☆ 厚重的整体金属外壳提供了高稳定性
☆ 天然原生橡胶垫片,更持久耐用
☆ 超过20种振荡附件可选配

☆ Rugged and reliable, the Vortex-Genie 2 is the most
    popular vortex mixer. 

☆ Variable speed control allows high speed shaking or
    vortexing with tough metal housing. 

☆ Supplied with 3 inch Platform (shown) and Pop-Off Cup.

涡旋振荡器